Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daqing Shi, ${ }^{\mathbf{a},{ }^{\mathbf{b}} *}$ Chunling Shi, ${ }^{\text {a }}$ Zhengyi ii $^{\mathrm{a}}$ and Xiangshan Wang ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ The Key laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.065$
$w R$ factor $=0.169$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

6-Chloro-3-(p-tolyl)-3,4-dihydroquinazolin-2(1H)-one

The title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$, was synthesized by the reaction of 5-chloro- N-(p-tolyl)-2-nitrobenzylamine with triphosgene, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$. The dihydropyrimidine ring adopts a boat conformation.

Comment

Quinazolines are an important class of compound found in many naturally occurring products (e.g. hinckdentine A; Blackman et al., 1987; Billimoria \& Cava, 1994) and employed as anticancer potent agents (Helissey et al., 1994; Brana et al., 1994; Riou et al., 1991; Ibrahim et al., 1988). Low-valent titanium reagents have an exceedingly high ability to promote the reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 1993, 1997, 1998, 2003, 2004). We report here the crystal structure of the title compound, (I).

(I)

In (I), the dihydropyrimidine ring adopts a boat conformation (Fig. 1 and Table 1). Atoms C3/C4/N2/C1 are coplanar, while atoms N 1 and C 2 deviate from the plane by 0.065 (2) and 0.184 (2) \AA, respectively. The dihedral angle between the $\mathrm{C} 3-\mathrm{C} 8$ and $\mathrm{C} 9-\mathrm{C} 14$ benzene rings is $72.3(2)^{\circ}$. In addition, because of the existence of a conjugated system, the $\mathrm{N} 1-\mathrm{C} 4$ [1.395 (3) \AA] and $\mathrm{N} 1-\mathrm{C} 1[1.355$ (3) \AA] distances are significantly shorter than the typical $\mathrm{Csp}^{2}-\mathrm{N}$ bond distance

Figure 1
The molecular structure of (I), showing 35% probability displacement ellipsoids and the atom-numbering scheme.

Received 8 July 2004 Accepted 23 July 2004 Online 31 July 2004
(1.426 Å; Lorente et al., 1995). Molecules are linked by N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming dimers (Fig. 2).

Experimental

The title compound, (I), was prepared by the reaction of 5 -chloro- N -(4-p-tolyl)-2-nitrobenzylamine $(0.55 \mathrm{~g})$ with triphosgene $(0.89 \mathrm{~g})$, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$ (yield 91%; m.p. 487-488 K). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}$
 $M_{r}=272.72$
 Monoclinic, $C 2 / c$
 $a=19.006$ (6) A
 $b=12.836$ (3) \AA
 $c=11.484$ (4) A
 $\beta=107.764$ (7) ${ }^{\circ}$
 $V=2668.1(13) \AA^{3}$
 $Z=8$

Data collection

Rigaku Mercury diffractometer

ω scans

Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.808, T_{\text {max }}=0.894$
14355 measured reflections
3048 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.169$
$S=1.08$
3048 reflections
178 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.358 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5465 reflections
$\theta=3.3-27.5^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, colorless
$0.80 \times 0.52 \times 0.41 \mathrm{~mm}$

2786 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-24 \rightarrow 24$
$k=-16 \rightarrow 14$
$l=-14 \rightarrow 12$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0745 P)^{2}\right. \\
&+3.41 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 1$	$1.235(2)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.435(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.355(3)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.442(3)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.395(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.500(4)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.365(2)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$124.80(18)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$116.91(18)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9$	$117.82(16)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$113.4(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	$124.71(18)$	$\mathrm{C} 8-\mathrm{C} 4-\mathrm{N} 1$	$120.48(18)$
C $9-\mathrm{N} 2-\mathrm{C} 2$	$117.17(17)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$118.85(19)$
C4-N1-C1-O1	$173.0(2)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$16.1(5)$
C4-N1-C1-N2	$-6.6(3)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$-170.3(2)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$	$1.0(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 5$	$169.7(3)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$	$174.6(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-15.1(5)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$-179.4(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 8$	$-174.9(2)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$-5.9(4)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$6.7(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.82(3)$	$2.00(3)$	$2.815(2)$	$177(3)$

Symmetry code: (i) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$.

Projection of the crystal structure of (I) along the a axis. Dashed lines indicate hydrogen bonds.

The H atom on N 1 was refined isotropically, with the $\mathrm{N}-\mathrm{H}$ bond length restrained to 0.82 (3) \AA; other H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, except for the methyl H atoms, for which $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: $S H E L X T L$; molecular graphics: SHELXTL.

The authors thank the Natural Science Foundation of the Education Committee of Jiangsu Province (No.03KJB150136) and the Foundation of the Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province for financial support.

References

Billimoria, A. D. \& Cava, M. P. (1994). J. Org. Chem. 59, 6772-6782.
Blackman, A., Hambley, T. W., Picker, R., Taylor, W. C. \& Thirasana, N. (1987). Tetrahedron Lett. 28, 5561-5564.

Brana, M. F., Castellano, J. M., Keilahauer, G., Machuca, A., Martin, Y., Redondo, C., Schlick, E. \& Walker, N. (1994). Anti-Cancer Drugs Des. 9, 527-538.
Helissey, P., Cros, S. \& Giorgi-Renault, S. (1994). Anti-Cancer Drugs Des. 9, 51-57.
Ibrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. \& Green, B. (1988). Eur. J. Med. Chem. 23, 183-188.

Jacobson, R. (1998). Private communication.
Lorente, A., Galan, C., Fonseea, I. \& Sanz-Aparicio, J. (1995). Can. J. Chem, 73, 1546-1555.
McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Riou, J. F., Helissey, P., Grondard, L. \& Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699-706.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. \& Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963-2964.
Shi, D. Q., Lu, Z. S. \& Dai, G. Y. (1998). Synth. Commun. 28, 1073-1078.
Shi, D. Q., Mu, L. L., Lu, Z. S. \& Dai, G. Y. (1997). Synth. Commun. 27, 41214129.

Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

Shi, D. Q., Wang, J. X., Shi, C. L., Rong, L. C. \& Hu, H. W. (2004). Synlett, pp. 1098-1100.

